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1 Introduction

Differences in gut microbiomes between humans have been implicated in a variety of
health problems, including obesity[1], irritable bowel syndrome, cardiovascular disease,
inflammatory bowel disease[2] and colorectal cancer[3]. The causes and mechanisms of
these issues, however, is less understood due to the large amounts of information available
in complete genome sequences of microbiome samples. Such a problem is intractable to
traditional methods of analysis, which can only handle small numbers of variables, and
is better suited to computational, machine learned methods.

While Hjorth et al.[1] were able to distinguish weight losers on a 6-month diet based on
broad categories of enteric microbes, the study does not explain its choice of categories,
nor how future studies of different diets or other metabolic functions (such as glycaemic
responses[4]) would be able to make similar distinctions. In particular, it may be the case
that other dietary strategies can accommodate for the remainder of the participants, and
that a future personalised health treatment would involve selecting the best of a number
of diets for a patient. This study therefore aims to provide a more general method of
categorising gut microbiomes in order to predict human weight loss on three different
3-month diets: Low glycaemic-index, high protein, or Mediterranean.

At least one stool sample was collected from each participant (n = 90, 30 per diet) before
and after each of these diets, as well as their weight loss (as a percentage of their starting
body weight) over this period. Each stool sample was represented by a subset of 13, 107
Operational Taxonomic Units (OTUs; a proxy for microbial species[5]), each expressed
as a percentage of the total genetic material in the sample (so that all of the proportions
in a sample summed to 1). Since the aim of this study is prediction, only the data from
the samples collected before the dietary period were used. This dataset will be referred
to as the 3diet data.
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Previous attempts by Haunton[6] to predict weight loss from the samples did not find
significant predictive power. The study also inappropriately applied Correlation-based
Feature Selection (CFS) before cross-validation, which meant that the subset of features
selected was created using data that was also used to test it. By doing so, CFS was
able to select a subset of the OTUs which happened to correlate well with the result, de-
creasing the cross-validation error between the predicted and actual weight losses. When
randomising the weight loss labels, the regressor was able to produce a similarly low error,
implying that CFS selected a different subset of OTUs that happened to correlate well
with the now-random result.

Gut microbiome data has three properties that reduce the effectiveness of machine learn-
ing: sparsity, noise, and small numbers of samples. Sparsity occurs when most of the
values in a dataset are zero, implying that the meaningful or useful data is spread out
among a large number of features. Many machine learning techniques assume that all
features are equally important and struggle with data where the useful features are hard
to determine. The problem is compounded by the large amounts of noise in most biolog-
ical data, which randomly make features appear more or less useful than they are in the
population distribution. In human data, it is also much harder to control their environ-
ments or whether they stick to their dietary plans. When machine learning models train
on these noisy features, they will then often attempt to learn patterns that appear to
emerge from the noise (known as overfitting). It is also difficult to obtain large numbers
of samples due to the costs of working with humans and animals, which means that it
will be more difficult to approximate the population distribution of data.

When dealing with gut microbiome data, these limitations can be mitigated by reduc-
ing the number of features. In doing so, the main options are to categorise by genetic
similarity, or by indicators of functional similarity. For predicting bodily responses to
dietary changes, it would be better to cluster together OTUs based on their function,
especially since Read and Holmes[7] state that genetic similarity is unlikely to provide
much information about the function of two different microbes.

In order to do so, OTUs were clustered on a second, larger dataset of 30 genetically
identical mice. 3 mice in a cage were fed the same 12 diets in succession, spending 5 days
on a diet followed by 1 day on standard chow. Faeces was collected and sequenced into
2, 519 OTUs on the 3rd and 5th days of each diet. This dataset will be referred to as the
mouse data.

Since this data is more controlled with many more samples, it will reduce the amount
and effects of noise. It will be able to capture a wider range of responses to different diets
than 3diet, meaning that OTUs that respond similarly to dietary changes are more likely
to belong to the same functional grouping. These functional groupings of OTUs could
be transferred to the OTUs in 3diet to improve its predictive power.

Code for this study can be found at https://github.sydney.edu.au/heva9329/sctp3669,
using Jupyter Notebooks. Packages used include scipy, skbio, sklearn, tensorflow
and numpy (cited where relevant).
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Figure 1: Example of a dendrogram using complete link clustering. Cutting off the dendrogram
at y = 300 would produce the highlighted clusters {{1}, {2, 5}, {0}, {3, 4}}

2 Method

2.1 Forming Functional Clusters

There are a number of methods that can be used to cluster together OTUs. Many of them
are unsuitable for microbiome data because they either require the number of clusters k to
be provided a priori (which we had no reasonable estimate of), or they cluster over all of
the supplied dimensions — where clustering is impossible due to many dimensions being
zero or noisily distributed. Hierarchical clustering was chosen, which repeatedly merges
clusters based on a supplied distance metric and does not have these issues. At each
step, it compares each pair of elements between two clusters, and either merges them if
the minimum (single link clustering), maximum (complete link), or mean (average link)
distance is below the threshold for that step. Complete link clustering was chosen to
ensure that different clusters were maximally separated.

This produces a dendrogram (Figure 1), which can be cut off on its y-axis to return the
set of clusters that existed before that step. Since Euclidean distance suffered from the
curse of dimensionality mentioned above, two different metrics were considered: Partial
correlations, and a novel biologically-motivated δ-measure.

3



2.1.1 Partial Correlations Between OTUs

One way of comparing two OTUs is to determine to what extent the values of one OTU
can be expressed as a linear function of another — i.e. how much they correlate, expressed
as a correlation coefficient −1 ≤ ρ ≤ 1. However, this comes with a number of pitfalls
that need to be mitigated. Existing approaches to OTU data are prone to statistical
biases due to compositional data and deficiencies in correlation coefficients.

Compositional data (where the values in every sample sum to the same number) exhibit
both a negative correlational bias and a different correlational structure to the population
distributions[8, 9]. Gloor et al.[8] recommend that the data is first transformed from the
unit simplex to the real space Rd by taking the centred log-ratio (clr) transform over the
sample vector ~x = [x1, x2, . . . , xn]:

~xclr = [log
x1
G(~x)

, log
x2
G(~x)

, . . . , log
xn
G(~x)

] (1)

where G(x) is the geometric mean n
√
x1 × x2 × . . .× xn

Correlation coefficients are biased because they fail to take into account the effects of other
variables on the pair being explicitly compared[8, 9]. If OTUs A and B correlate highly,
but are actually conditionally independent when the effect of OTU C is subtracted, then
the correlation matrix be positively biased toward them. In OTU data, where complex
networks of cause and effect are prevalent, use of the correlation matrix will lead to
incorrect results. Instead, Kurtz et al.[9] recommend using the inverse covariance matrix
to compute partial correlations between pairs of OTUs, where a partial correlation first
subtracts the effects of all other variables on each pair.

Unfortunately, as Cao, Lin, and Li[10] remark, the sample covariance matrix is singular
when the number of variables is larger than the sample size, and therefore not invertible.
There are a range of estimation techniques available, but many assume the population
covariance matrix to be sparse, which runs contrary to our assumption that OTUs form
complex networks of interactions. The Maximum Likelihood Estimator (provided in
Scikit-learn as EmpiricalCovariance) was chosen, as of the methods that remained it
was sufficiently unbiased when the number of variables greatly exceeded the number of
samples[11]. Figure 2 compares the final estimated partial correlation matrix with the
sample uncorrected correlation matrix. Code to produce this figure can be found in the
Jupyter Notebook at notebook/Correlations vs Partial Correlations.ipynb.

For hierarchical clustering, the metric d = 1 − ρAB was used to compute the difference
between OTUs A and B. If A and B were maximally similar (ρ = 1), then d = 0, and if
they were maximally dissimilar (ρ = −1), then d = 2.
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Figure 2: Pearson correlation matrix compared to partial correlation matrix. The Pearson
matrix exhibits a strong positive bias. Some of its structure is still present in the partial
correlation matrix.

2.1.2 δ-measure: Selecting Similarly Responsive OTUs

The δ-measure leverages the specifics of the mouse study to create a more biologically-
motivated distance metric. If two OTUs A and B were to respond similarly to a change
in diet (i.e. increase or decrease together), then it is likely that they perform the same
function. This is because microbes in the gut process different components of different
diets, and are able to populate more of the of the microbiome when fed those components.
If A and B had similar responses to all of the dietary transitions, then it is very likely
that they belong to the same functional grouping and should be clustered together.

Since the OTU data is compositional, care must be taken when interpreting a change
in relative OTU abundance. If an OTU increases in relative abundance, that may be
because it has increased in absolute abundance, or it may be because other OTUs have
decreased in absolute abundance. However, if the relative abundances of two OTUs move
in different directions we can be confident that they did not respond to the change in
diet in the same way. For a pair of OTUs, the distance between them is the number of
dissimilar responses in relative abundance (either an increase, decrease, or stagnation;
stagnation only occurs when an OTU is below detection threshold for two diets). As
each OTU is considered over 109 possible transitions × 3 mice per transition, noise in
these responses should largely cancel out.

The final consideration was whether to group the mice in a cage or consider them individ-
ually. Since the mice in each cage were genetically identical and experienced exactly the
same environment, taking a majority vote for the difference in an OTU’s change would
cancel a lot of noise (as it was assumed that any differences left over would very likely be
noise). Hence this approach was selected.
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2.2 Evaluation of Clusters on the 3diet Dataset

The method outlined above will produce a set of clusters, where each OTU in the mouse
data belongs to exactly one group. In order to evaluate sets of clusters, they were trans-
ferred to the 3diet dataset and used as features to predict weight loss. For a set of clusters
to be considered valuable, it has to make better predictions than a baseline where all of
the OTUs were considered individually.

2.2.1 Baseline Evaluation

As each participant may have had more than one sample taken, all 3diet results used
leave-one-group-out cross-validation. 90 models were successively trained, where the kth

model used all of the data except participant k’s. Each model would then predict the
weight loss for each of the samples it did not train on. Three techniques were used in
baseline evaluation:

• Random Forests (varying the number of decision trees generated and the number
of variables randomly selected to train each tree on)

• Neural Networks (varying the learning rate α, the regularisation term β, and the
the number of hidden nodes h)

• Linear Regressors (varying whether a regularisation term β was applied, and the
value of that term)

Selecting only the x% most abundant variables and leave-k-groups-out cross-validation
were attempted, but did not produce meaningfully different results so were not considered
in the final baselines.

During evaluation, one model was trained on each of the three component diets and had
its predictions combined, while another was trained on the entire dataset. Each model’s
predictions were compared to the true weight loss by taking both the mean-squared error
and a correlation coefficient. Code to produce the baseline evaluations can be found in
notebook/3diet Baseline.ipynb.

2.2.2 Transferring Clusters to 3diet

To combine OTUs in a cluster into a single metric, they should be summed together to
capture the intuition that OTUs are proportional. As they are from different species,
the 3diet and mouse datasets only share 127 OTUs. One way of transferring clusters to
3diet was to only use these OTUs, combining them whenever two or more appeared in a
cluster from the mouse data together.

6

https://github.sydney.edu.au/heva9329/sctp3669/notebook/blob/master/notebook/3diet%20Baseline.ipynb


The alternative solution was to assign each OTU in the 3diet data to a cluster based
on the OTU’s known metabolic capacities from the KEGG database[12]. Every OTU in
both the mouse and 3diet studies has a set of known structures in its genome, some of
which it uses to perform metabolic functions. We can create a ‘signature’ for each cluster
by finding the proportion of OTUs in the cluster that have each structure, and assign
new OTUs to each cluster by finding the closest match.

To find the score for whether an OTU belongs to a cluster, take the sum of the probabil-
ities that each metabolic structure in the OTU belongs to the cluster, and divide by the
base rate of that structure’s prevalence. If half of the OTUs in a cluster had a certain
structure but only one-tenth of the OTUs overall had it, then that structure would receive
a score of 1

2
÷ 1

10
= 5 for the cluster. The following situations are ranked in order of their

score:

1. An OTU shares a lot of structures with a cluster, and those structures are not
common in the population

2. An OTU shares a lot of structures with a cluster, but they’re all common

3. An OTU shares few structures, but they’re uncommon (and therefore distinguish-
ing)

4. An OTU shares few structures, and they’re common

To evaluate the transferred clusters, the cutoff for clustering on the dendrogram (t; the
maximum difference between two clusters on the dendrogram) was varied between 0 and
the maximum value that appeared on the dendrogram. At t = 0, each OTU is in its own
cluster, and at t = tmax, all of the OTUs are in one cluster.

The combined values were trained on a random forest regressor with 30 trees and the
full number of features (1 per cluster) each time. Once again, the data was alternated
between being split by diet and not. Code to produce these evaluations can be found in
notebook/3diet with Clusters.ipynb.

3 Results

3.1 Baseline

Table 1 summarises the best baseline results for each method and hyperparameter tuned.
The best possible mean-squared error achieved was 8.26, using random forests with #
trees = 30 and # features = 8278 and splitting the dataset into 3. The predicted weight
loss is compared with the actual weight loss in Figure 3. The full baseline results are
included in the Appendix in Tables 3, 4 & 5.
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Method Parameter Together Split

RF # features 8.30 8.47
# trees 8.35 8.26

NN α 19.63 18.57
β 15.26 18.54
h 8.71 8.48

Linear β 8.42 8.29

Table 1: Sample baseline results for 3diet. For each method and hyperparameter, the best
mean-squared error achieved during tuning is included.

Intersection Structures
Diets Partial δ Partial δ

Together 8.97 10.81 8.44 8.66
Split 9.46 18.57 8.80 8.70

Table 2: Sample baseline results for the transferred clusters. For each variation of the method,
the best mean-squared error is recorded.

Splitting the data into three diets produced significantly lower mean-squared errors on
the baseline (p = 0.018; Paired t-test where H0: MSEsplit < MSEtogether).

3.2 Transferring Clusters

Table 2 summarises the results when transferring OTUs from the mouse study into 3diet.
The best possible mean-squared error achieved was 8.44, by transferring OTUs using their
metabolic structures, clustering using partial correlations, and not splitting the data into
diets. This result used a clustering cutoff of t = 1.4 (70% of the maximum distance on
the dendrogram). The predicted weight loss for this configuration is compared with the
actual weight loss in Figure 3. The full results for transferred clusters are included in the
Appendix in Table 6.

Using this method, there was no significant difference in mean-squared error when split-
ting the data or using it all together (p = 0.445; Paired t-test where H0: MSEsplit 6=
MSEtogether). However, using partial correlations as a metric was significantly more per-
formant than the δ-measure (p < 10−5; Paired t-test where H0: MSEpartial < MSEδ),
and transferring clusters was significantly more performant than using the intersection
(p < 10−7; Paired t-test where H0: MSEstructures < MSEintersection).

In whole, transferring clusters performed significantly worse than the baseline results for
random forests (p < 10−22; Paired t-test where H0: MSEbaseline < MSEtransfer , assuming
unequal variances). The best method for transferring clusters (metabolic structures,
partial correlations, not splitting) also performed significantly worse than the baseline
results (p = 0.022; Paired t-test where H0: MSEbaseline < MSEtransfer , assuming unequal
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Figure 3: Predicted and actual weight loss on the best-performing models.

variances).

4 Discussion

The best performance on the 3diet dataset was unable to predict weight loss with a
reasonable degree of accuracy. This is clear from the performance measures (mean-
squared errors and correlation coefficients), and the sampled scatter plots, which also
show highly divergent values for pairs of samples from the same patient. Since these
results were evident in all tests, it is likely that the 3diet dataset is intractable with
current methods. The reasons for this (including sparsity, noise, and a lack of samples)
are discussed in the introduction, and widely apply to all microbiome datasets.

On the baseline results, using different methods did not hinder results after tuning. In
all cases, tuned models achieved mean-squared errors in the range of 8.29 to 8.48. It
was therefore acceptable to only use a single method (random forests) when transferring
clusters. However, a model created to always predict the mean weight loss of its training
data obtained mean-squared errors of 8.47 and 8.29 for the diets together and split,
respectively. This implies that none of the models performed better than the most näıve
guess.

Although splitting the dataset into the 3 diets achieved significantly smaller mean-squared
errors, this is could be due to the difference in the two methods’ näıve performance. No
conclusions can be drawn about whether splitting the dataset into 3 was valuable.
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Transferring OTUs from the mouse data to 3diet was unable to achieve significantly
better results, even when comparing the best-performing transferred model to all of the
baseline results (including untuned models). This cannot be explained by a difference in
näıve guesses, so could be due to deficiencies in the transferring method. One side effect
of combining features could be that with less features, there is less information for the
model to learn from, so it produces worse predictions. A methodological reason could be
that the transferred models relied on the tuned parameters from the baseline model, and
that these parameters may no longer be the best possible for the new models.

When conducting the transfer, assigning each OTU in 3diet to a cluster based on its
metabolic structure was better than using the 127 intersecting OTUs. This was expected,
as using the full set of OTUs would mean that there was more information to learn from.
This doesn’t capture the full picture, since once transferred each method produced the
same number of clusters, so there were no more variables to learn from. Instead, the
likely reason for this performance increase is that the extra OTUs provided more fidelity
to the existing clusters, many of which had no members from the intersection.

The most promising result is that using partial correlations performed significantly better
than the δ-measure. As it was more biologically motivated, it was surprising that the
δ-measure performed worse. This could be due to the fact that it binarises the change
in OTU abundance between diets, and therefore does not provide any information about
the magnitude of that change (unlike partial correlations, which are able to capture that).
It could also be because the δ-measure does not seek to subtract the effect of all other
OTUs.

5 Conclusion

Since the 3diet dataset was relatively intractable to machine learning methods, it was a
poor candidate for evaluating this methodology. However, it was still able to produce
some directions for future microbiome data analysis.

Firstly, microbiome studies are likely to benefit from the considerations outlined regard-
ing partial correlations. Reasons were given in the introduction about why it is important
to treat compositional data differently and take partial correlations over Pearson corre-
lations, as well as specific methods for overcoming issues such as the singularity of the
sample covariance matrix.

Secondly, new methods such as these should be evaluated on larger, more biologically
similar datasets. The best way to counteract the issues outlined with microbiome data
is to take more samples. As this can be expensive in humans, it would have been more
useful for this study to evaluate the clustering method on another dataset from mice —
not only because more samples would be able to be obtained, but because the clustering
method was being performed on a dataset from mice. Using the same species for both
datasets would have ensured that similar OTUs were present in both (instead of the much
smaller intersection in this study), and that the underlying biological processes were more
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similar. Further, using mice in both datasets would have ensured more control over the
experiment, which would have reduced noise.

The methodology of transferring functional OTU groupings was inconclusive, because
although it produced worse results than a näıve guess, the dataset being used to evaluate
it was not tractable. If a future study were to repeat this method, it should cluster the
OTUs using partial correlations, and transfer them using the metabolic structures. It
should also ensure that its models are fully tuned before making any comparisons.
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Appendix

Diets Together Split
Parameter Value MSE ρ MSE ρ

# features 1 8.46 0.094 8.49 0.120
1380 8.60 0.066 8.64 0.101
2760 8.56 0.083 8.51 0.145
4139 8.57 0.083 8.47 0.157
5519 8.56 0.087 8.53 0.143
6898 8.76 0.046 8.85 0.094
8278 8.30 0.158 8.65 0.135
9658 8.62 0.085 8.82 0.107

11037 8.74 0.055 8.71 0.127
12417 8.72 0.073 8.92 0.099

# trees 10 8.98 0.083 9.32 0.042
30 8.48 0.126 8.26 0.187
50 8.41 0.135 8.34 0.167
70 8.41 0.127 8.43 0.146
90 8.35 0.138 8.36 0.154

110 8.48 0.106 8.39 0.146
130 8.46 0.110 8.38 0.148
150 8.44 0.113 8.36 0.149
170 8.44 0.115 8.37 0.146
190 8.48 0.102 8.45 0.130

Table 3: Baseline Random Forest results for 3diet. Records mean-squared error (MSE) and
correlation coefficient ρ between predicted and actual weight loss. The # features model was
trained with # trees = 90, and the # trees model was trained with the best performing #
features.

13



Diets Together Split
Parameter Value MSE ρ MSE ρ

α 10−5 27.19 -0.106 19.73 0.065
10−4 26.03 -0.041 19.65 0.071
10−3 23.35 -0.014 18.57 0.131
0.01 27.01 -0.010 19.61 0.109
0.1 19.63 0.049 27.11 -0.141

β 10−8 62.04 -0.080 24.49 -0.113
10−7 62.06 -0.080 21.45 0.004
10−6 62.07 -0.081 26.86 -0.137
10−5 62.01 -0.081 23.35 -0.111
10−4 62.05 -0.072 24.14 0.024
10−3 61.94 -0.072 24.63 -0.075
0.01 60.07 -0.121 25.98 -0.096
0.1 54.34 -0.214 22.41 0.059
1.0 62.21 -0.192 21.53 0.093
10 151.12 0.215 18.54 0.195

100 373.29 -0.208 26.77 -0.021
103 23.73 -0.215 18.99 0.135
104 15.26 -0.075 21.84 -0.041
105 16.44 -0.112 22.96 -0.023
106 16.48 -0.114 21.14 0.020
107 16.52 -0.115 19.63 0.110
108 16.51 -0.115 27.07 -0.097

h 4 8.71 0.043 8.48 0.113
8 9.28 -0.076 9.25 0.007

16 9.38 0.010 9.18 0.074
32 12.30 -0.235 9.33 0.144
64 11.87 0.044 13.29 -0.047

128 17.18 -0.003 18.12 -0.102
256 23.77 -0.021 26.15 -0.086

Table 4: Baseline Neural Network results for 3diet. Records mean-squared error (MSE) and
correlation coefficient ρ between predicted and actual weight loss. The α model was trained
with β = 103, h = 256, successive models were trained with the tuned parameters from the
previous ones.
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Diets Together Split
Value MSE ρ MSE ρ

β 10−8 8.75 0.029 8.42 0.125
10−7 8.75 0.029 8.42 0.125
10−6 8.75 0.029 8.42 0.125
10−5 8.75 0.029 8.42 0.125
10−4 8.75 0.029 8.42 0.125
10−3 8.75 0.029 8.42 0.125
0.01 8.75 0.029 8.42 0.125
0.1 8.75 0.029 8.42 0.125

0 (No term) 8.75 0.029 8.42 0.125
1.0 8.75 0.029 8.42 0.125
10 8.75 0.029 8.42 0.125

100 8.74 0.030 8.42 0.125
103 8.68 0.035 8.39 0.130
104 8.46 0.063 8.31 0.138
105 8.42 0.070 8.29 0.138
106 8.46 -0.062 8.29 0.137
107 8.47 -0.098 8.29 0.136
108 8.47 -0.101 8.29 0.136

Table 5: Baseline Linear Regression results for 3diet. Records mean-squared error (MSE) and
correlation coefficient ρ between predicted and actual weight loss.

Transfer Intersection Structures
Metric Partial δ Partial δ
Diets Together Split Together Split Together Split Together Split

t = 0% 9.96 10.10 11.00 10.48 9.01 8.81 8.96 8.94
10% 10.07 9.95 11.66 10.45 8.84 8.85 8.92 8.72
20% 10.14 10.10 11.99 11.70 8.59 8.80 8.72 8.70
30% 10.22 10.04 11.56 11.75 8.78 8.92 8.66 8.86
40% 10.09 10.17 11.56 12.14 8.81 9.20 9.01 9.84
50% 10.19 9.90 11.55 12.28 9.03 9.69 9.42 9.59
60% 10.25 9.76 11.51 12.28 8.82 9.83 9.75 10.17
70% 10.54 10.75 10.81 12.14 8.44 11.30 9.67 9.79
80% 9.83 9.46 11.58 11.97 10.24 11.08 10.65 9.75
90% 8.97 10.46 12.74 11.59 10.39 10.59 12.78 12.18

100% 12.74 11.59 12.74 11.59 12.77 12.18 12.78 12.18

Table 6: Results from transferring clusters. t is given as a percentage of the largest value on
the dendrogram, such that t = 100% combines all of the OTUs into one cluster. Each score is
a mean-squared error.
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